skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Kuan-yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum many-body scars are notable as nonthermal, low-entanglement states that exist at high energies. In this study, we used attractively interacting dysprosium gases to create scar states that are stable enough to be driven into a strongly nonlinear regime while retaining their character. We measured how the kinetic and total energies evolve after quenching the confining potential. Although the bare interactions are attractive, the atoms behave as if they repel each other: Their kinetic energy paradoxically decreases as the gas is compressed. The missing “phantom” energy is quantified by benchmarking our experimental results against generalized hydrodynamics calculations. We present evidence that the missing kinetic energy is carried by undetected, very high momentum atoms. 
    more » « less
  2. Abstract Trace element concentrations in abyssal peridotite olivine provide insights into the formation and evolution of the oceanic lithosphere. We present olivine trace element compositions (Al, Ca, Ti, V, Cr, Mn, Co, Ni, Zn, Y, Yb) from abyssal peridotites to investigate partial melting, melt–rock interaction, and subsolidus cooling at mid-ocean ridges and intra-oceanic forearcs. We targeted 44 peridotites from fast (Hess Deep, East Pacific Rise) and ultraslow (Gakkel and Southwest Indian Ridges) spreading ridges and the Tonga trench, including 5 peridotites that contain melt veins. We found that the abundances of Ti, Mn, Co, and Zn increase, while Ni decreases in melt-veined samples relative to unveined samples, suggesting that these elements are useful tracers of melt infiltration. The abundances of Al, Ca, Cr, and V in olivine are temperature sensitive. Thermometers utilizing Al and Ca in olivine indicate temperatures of 650–1000 °C, with variations corresponding to the contrasting cooling rates the peridotites experienced in different tectonic environments. Finally, we demonstrate with a two-stage model that olivine Y and Yb abundances reflect both partial melting and subsolidus re-equilibration. Samples that record lower Al- and Ca-in-olivine temperatures experienced higher extents of diffusive Y and Yb loss during cooling. Altogether, we demonstrate that olivine trace elements document both high-temperature melting and melt–rock interaction events, as well as subsolidus cooling related to their exhumation and emplacement onto the seafloor. This makes them useful tools to study processes associated with seafloor spreading and mid-ocean ridge tectonics. 
    more » « less
  3. null (Ed.)
    Long-lived excited states of interacting quantum systems that retain quantum correlations and evade thermalization are of great fundamental interest. We create nonthermal states in a bosonic one-dimensional (1D) quantum gas of dysprosium by stabilizing a super-Tonks-Girardeau gas against collapse and thermalization with repulsive long-range dipolar interactions. Stiffness and energy-per-particle measurements show that the system is dynamically stable regardless of contact interaction strength. This enables us to cycle contact interactions from weakly to strongly repulsive, then strongly attractive, and finally weakly attractive. We show that this cycle is an energy-space topological pump (caused by a quantum holonomy). Iterating this cycle offers an unexplored topological pumping method to create a hierarchy of increasingly excited prethermal states. 
    more » « less
  4. Long-lived excited states of interacting quantum systems that retain quantum correlations and evade thermalization are of great fundamental interest. We create nonthermal states in a bosonic one-dimensional (1D) quantum gas of dysprosium by stabilizing a super-Tonks-Girardeau gas against collapse and thermalization with repulsive long-range dipolar interactions. Stiffness and energy-per-particle measurements show that the system is dynamically stable regardless of contact interaction strength. This enables us to cycle contact interactions from weakly to strongly repulsive, then strongly attractive, and finally weakly attractive. We show that this cycle is an energy-space topological pump (caused by a quantum holonomy). Iterating this cycle offers an unexplored topological pumping method to create a hierarchy of increasingly excited prethermal states. 
    more » « less
  5. Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules.During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb -1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector.Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2.It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%.Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules. 
    more » « less